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In this paper we establish the validity of the BBGKY equilibrium equations for 
Coulomb states which have been obtained as thermodynamic limit of finite 
volume states. We also give a new derivation of the /-sum rules for phases 
constructed by the cluster expansion. These sum rules are interpreted as Ward 
identities associated to a symmetry of the screening phase. 

KEY WORDS: Coulomb systems; BBGKY equations; sum rules; symme- 
tries. 

1. I N T R O D U C T I O N  

The  s tar t ing po in t  of m a n y  theoret ica l  invest igat ions  on the physics  of 
cha rged  fluids and  p la smas  at  equi l ib r ium is the so-cal led B B G K Y  ( B o r n -  

B o g o l i u b o v - G r e e n - K i r k w o o d - Y v o n )  hierarchy of equat ions.  (1'2) This hierar-  
chy is a set of re la t ions  be tween  the N and  N + 1 po in t  funct ions  which 
have  the form 

V ~o(ql . . . qu)  = % I ) E ( x l ) o ( q l  " " " qN) 

+ f dqF(ql,q)(p(ql . . .  quq)  -- P(q)o(q~ . . .  qu ) )  (1.1) 

W e  used the no ta t ion  q = (a ,  x)  with c~ the species of the par t ic le  loca ted  at  

x,  e~ its charge,  and  f d q  = f~ ,dx  Y,~.  F (q j ,  q 2 ) =  -e~(l)e~(2)V~eO(x~- x2) is 
the force, o(qO, o(qlq2) . . . .  are  the singlet, d o u b l e t , . . ,  d i s t r ibut ions  
def ined  in the usual  way, a n d  E ( x )  is the electr ic field due  to all the charges 
(sys tem's  charges  plus externa l  and  b o u n d a r y  charges).  These equi l ibr ium 
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equations are easily derived in a finite volume Gibbs ensemble and they are 
usually assumed to still hold after the thermodynamic limit for the correla- 
tion functions of the infinitely extended state. 

In a series of papers, ~3-5) assuming the validity of (1.1) in the thermo- 
dynamic limit, it has been shown that under certain clustering conditions, 
the long range of the Coulomb force imposes additional constraints on the 
correlations, which are typical for charged systems. The first one is the local 
neutrality which reads in a homogeneous state 

e ~p~ = 0 

The others are the muhipolar sum rules 

f dqeo Y,(x)o(q 
l = 0 , 1  . . . . .  

where 

q~ . . .  qN) = 0 (1 .3)  

N =  1 , 2 , . . .  

P(qql �9 �9 qN) 
P ( q l q ~ ' ' ' q u ) - -  p ( q , . . . q u )  

N 

+ 2 6q,q- o(q) (1.4) 
i = 1  

[6q~,q2 = 6~(1),~(2)6(x I - x2) ] 

is the excess *particle density at q in the presence of any N particles 
a ( 1 ) . . ,  a (N)  fixed at x l . . .  x N, and YI is an harmonic polynomial of 
order l. The sum rules (1.3) express that the multipole moments of order l 
of the charge density induced by specifying the positions of any N particles 
vanish. 

On the other hand, several recent works have been devoted to the 
construction of the thermodynamic limit (in two and three dimensions) by 
means of correlation inequalities ~6) and cluster expansions. (7'8) The purpose 
of this note is to supplement these results by showing explicitly that the 
states so obtained obey the equilibrium equation (1.1) and the sum rules 
(1.2), (1.3). We find in fact that these states, which are translation invariant, 
are always locally neutral and verify (1.I) with E(x)  = 0. One should recall 
here that in one dimension there exist solutions of the hierarchy (1.1) with 
nonvanishing electric field (0 states or dielectric states). (9) 

In Section 2, we briefly recall the functional integration formalism and 
the results of ~6-8) that we need in the sequel. We show in Section 3 that the 
correlations satisfy a regularized version of the BBGKY hierarchy in all the 
cases where the thermodynamic limit has been constructed. Moreover, the 
correlations obey the ordinary hierarchy (1.1) whenever they cluster faster 
than ]x1-1 (~ = 3). We establish in Section 3 that the local neutrality is 
generally true and that the /-sum rules hold when there are sufficiently 
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strong clustering properties. In particular, the states of Refs. 7, 8 (several 
components and jellium), which are known to be exponentially clustering, 
satisfy (1.1) [with E ( x )  = 0], (1.2), and (1.3) for all l, N. This provides a new 
derivation of the/ -sum rules which does not use the BBGKY. [Actually we 
have to use the local neutrality to prove the BBGKY equations (1.1)]. 

Our result (BBGKY and the/ -sum rules) rely on two simple identities 
in the Sine-Gordon representation: the integration by parts formula and the 
translation of a Gaussian measure. These identities imply that Eqs. (1.1), 
(1.2), (1.3) are true at finite volume up to terms depending on the bounda- 
ries. We then use the estimates of Refs. 6-8 to show that these additional 
contributions vanish in the thermodynamic limit. 

It is interesting to remark that the/-sum rules can be considered as the 
"Ward identities" corresponding to the formal local phase transformations 
z ~ z ~ e x p [ i G Y ( x ) ]  in the activity phase, where Y ( x )  is an harmonic 
function. This is discussed in more detail in the last section. 

2. DEFINITION AND PROPERTIES OF THE MODEL 

2.1. The Model 

We consider a system of s species of particles, species a having the 
charge G.  The G are multiples of a unit charge e o. The particles interact via 
a two-body potential ~(ql,q2) = G ( I ) G ( 2 ) V ( x l -  x2). We carry out the 
details for dimensions v = 3; for v = 1 or 2, see the comments at the end of 
Sections 3 and 4. V(x~ - x2) will be chosen of positive type: it contains the 
Coulomb potential plus a short-range potential in order to insure stability. 
Typically we shall take 

1 - e x p ( - d ] x  1 - x2l ) 
v(xl - x2) = 4 < x ,  - Xzl , d > 0 (2.1) 

We could also consider the regularized Coulomb potential 

v(x,  - x:) = f dz f az, x(x, - 
z t ) 

a-~77- 71 (2.2) 

where 

x(x) ~ J(R' ) ,  x(x) = x(Ixl), x(x) = o, Ixl > R, 

The poten t ia l  o f  N par t ic les  is 

f dxx(x) = 1 

U ( ( q )  N ) = ~ e~(i)e~(j) V ( x  i - x j )  (2.3) 
l<i<j<-<.N 
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with the notation 

(q)u = (q, . . . qu), qj = (a ( j ) , x j ) ,  

The grand canonical partition function in a finite volume A is defined 
by 

2 A ( B , z )  = ~ ~ d ( X ) N e x p [ - - f l U ( ( q ) u )  ] (2.4) 
N " �9 

The multi-index N = (N 1 . . .  N~) specifies the number  of particles of each 
species present and 

Z N - -  f l  Z~'~ 
N v �9 ~ = 1  N~!  

The finite volume correlation functions are 

OA((q)u) = Z - l z N 2  ~ fA M ~ Md(x ' )Mexp[ - -BU((q )N(q)M)]  (2.5) 

2.2. Existence of the Thermodynamic Limit 

The existence of the infinite volume limit of the thermodynamic 
functions has been established in great generality by Lieb and Lebowitz. (l~ 
Existence of the limit of the correlation functions has only been established 
under more restrictive conditions that we now recall. 

2.2.1. Charge Symmetric Systems (6) 

Condition CS. (i) for any a, there exists a species c( such that 
e~ = - e~,; (ii) if a and a '  are such that e~ = - e~,, then z~ = z~,. 

Theorem 1. If condition CS holds, then for all fi, z the thermo- 
dynamic limit of the finite volume correlation functions exists and is 
translation invariant. 

2.2.2. Plasma Phase (7'8) 

Condition P 
i. fie2/lD is small with l D = ( f iE~=lz~e~)  - ' / 2  
ii. ~=le ,~z~  = 0 
iii. z J m a x ~ ( z ~ )  >~ C > 0 
iv. In the definition of V.A,PA((q)N) , V(x  I - x2) introduced in (2.1) is 

replaced by 

VA(x I ,x2) = ( -  2xa)- l(x,,x2) - (-zX A + d 2 ) - ' ( x l , x 2 )  (2.6) 

where 2x a is the Laplacian with Dirichlet boundary conditions on A. 
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Theorem 2. If condition P holds, the thermodynamic limit of the 
finite volume correlation functions exists, is translation invariant, and has 
the exponential clustering property. 

This theorem has recently been improved; Imbrie has been able to 
handle the jellium system. This formally corresponds to the case z s-~ 
with zse ~ fixed, or in other words, to relax condition P(iii)J 8) Federbush has 
considered particular Coulomb systems where conditions P(ii) and P(iv) 
have been relaxed. (1~) 

2.3. The Sine-Gordon Representation 

To prove the above theorems, it was useful to represent a Coulomb 
system as a (Euclidean) field theory. (12) 

Let dlXv(.O ) be a Gaussian measure on J ' ( g " )  of covariance V(x 1 - 
x2); dlsv(O ) exists when V is of positive type, and with the choice (2.1), the 
support of dl.tv(O) is the set of continuous functions on W--see Ref. 7. 

The basic identity relating statistical mechanics to Gaussian integrals is 

N 

exp[-f iU((q)N)] = f dlzv(O) I~ {:exp[i~-fie<~(j)O(xj)] : } (2.7) 
j=l  

with 

I fdx+ f(x)V(x-s)f(y)]exp['+(f)] :exp[ i~b(f)] : = exp[ 

The partition function can then be written as 

Y"A( fi, Z ) :  "r (+) exp Ii ~ : ,  ~ z~r :exp[ ,~lfie~+(x)]: ) (2.8) 

Introducing the perturbed Gaussian measure 

dl~'z(O)=~s z)exp 2z.(dx:exp[i~/-~e.eo(x)]" d~v(O) (2.9) 
a =  I J A  

and the notation 

<--)A = f--d~'z(e~) 

the finite volume correlation functions are given by 

pA((q)/v)=(j~=l(z,~(j):expli~-~e,~(j)gp(xj)]:}) A (2.10) 

We now gather some bounds on correlations that we shall need in the 
sequel. 
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Lemma. (i) Systems satisfying condition (CS) or (P) obey the bounds 
uniformly in A (v = 3): 

( rI (:exp[ivTfie~(j)eO(xj) l: leOP(x) l <~ C N = O ,  1 , . . . ,  p = O ,  1 
\ k L J J / j =  1 A 

(ii) If (P) holds the truncated correlations 

( iI:expli<  l:>,,,x>) 
have an exponential clustering as Ixl-> ((--) = lima~s,.(--)A; (A; B)  
= ( A S )  - ( A ) ( ~ ) ) .  

The proof of the lemma follows from the methods developed by 
Imbrie. (s) In the charge symmetric situation, the part (i) can be deduced 
from an infrared bound. (6) 

3. THE BBGKY EQUILIBRIUM EQUATION 

As stated in the Introduction, we introduce a regularized form of the 
BBGKY equations. Define for any rn > 0 

Dm(Xl -  x 2 ) = [  V(I =I = m2V)-l](xl,x2) (3.1) 

as the kernel of the operator V(1 + m2V) 1 where V is the integral 
operator (2.1), and set Fro(x)= - V Dm(x), Fm(ql,q2) = e~(1)e~(2)Fm(xl - 
x2). Notice that Din(x) is differentiable for x 4= 0, has finite directional 
derivatives at x = 0, and decays exponentially fast as Ixl--> ~ for m > 0 [if 
V is the Coulomb potential without short-range regularization, Dm(x) 
reduces to (1/47rlxl)exp(-mlx]), the Yukawa potential; see (B.7)in Ap- 
pendix BI. 

Definition. A state satisfies the regularized BBGKY equation if 

- fdx~ (Vf)(x~)o(q, . . .  qN) 
N 

= / ?  lira ( d x  1 f(x,)  ~,, F~(ql,qj)o(q, . . .  qN) 
m-->O d j =  2 

+ fl lim (dx,  f(xl)  
m-~O J 

• f d q F m ( q , , q ) ( o ( q ,  . . .  qNq) -- P(q)o(ql. . .  q~,,)) (3.2) 

for all f E J .  

Theorem 3. If a Coulomb system obeys either condition (CS) or (P), 
then its infinite volume state satisfies the regularized BBGKY hierarchy. 
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Corollary. If a Coulomb system obeys either conditions (P) or condi- 
tion (CS) with the clustering property 

I~((q)Nq) - p((q)N)o(q) l  < c ~ > 0 (3.3) ' 

[d((X)m , X) ---- Euclidean distance], then its infinite volume state satisfies the 
ordinary BBGKY hierarchy. 

The tool to prove Theorem 3 is the integration by parts formula for 
Gaussian measure (13) and the bounds of the lemma. We also introduce a 
regularized form of this formula, which will be useful to handle the 
thermodynamic limit. 

If d//(0 ) is a Gaussian measure with smooth covariance V(x,y) 
= fdl~(q))q~(x)O(y) and F(~) is a smooth functional on C~ ~) we have 

f +(,),(x)F(,)= f dyv(x, y) f d,(O) 8F(~ (3.4) ~o(y) 

For any real •, define the function G(x)= fdlL(O)F($):exp[ikO(x)]:. We 
then obtain from (3.4) the following formula (replacing there F(4,) by 
:exp[i~@(x)]:F(~), see Appendix A) 

8F(~,) (3.5) (V G)(x)= iX f dy [ VxV(x, y) ] f d~(o) :exp[i;~O(x) ]: 60(Y) 

It is easy to check that an application of (3.5) to the representation (2.10) of 
the correlations yields the finite volume BBGKY equations. From this 
point of view, these are similar to the ordinary Schwinger-Dyson equations 
of field theory, which are also derived by integration by parts. 

The regularized integration by parts formula reads (14) 

f d~(o)O(x)F(~,) = f dy Din(x, y) f d.(O) 6F(01 
. 6o(y) 

+ m2fdy Dm(x, y)fd~(o)+(y)F(O ) (3.6) 

where O m ( x ,  fl) is related to V by the formula (3.1). As before, we deduce 
from (3.6) the identity 

8F(,~) 
(v c ) ( x )  = i;,f+ [ VxD"(x, y)]fd~(O) :exp[ ihO(x)]: 

60(y) 
+ &m2fdy[ Vxnm(x, y)]f+(,) :exp[ iAO(x)] :@(y)F(0) 

+ hzvx[ V(x,x) - nm(x,x)]G(x) (3.7) 
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Notice that if the covariance V(x, y) is translation invariant, V(x, x) and 
D m(x,x) are constant and the last term of (3.7) vanishes. 

Proof of Thoorom 3. We calculate the gradient of the finite volume 
correlation function (2.10) with the help of the regularized integration by 
parts formula (3.7). The result differs from the regularized BBGKY equa- 
tions by terms depending both on m and A. We then use the lemma to 
show that these terms vanish in the limit A ~ R 3 and m ~ 0. We perform 
the proof for systems obeying condition (CS) [with the translation invariant 
interaction (2.1)1. The plasma case, which involves boundary conditions on 
the Laplacian in (2.6), can be treated in the same way (see Appendix B). 

Applying (3.7) to (2.9), (2.10) with 
( s 

F($) = Z- lexp 2 z~(dx :exp i~-fle~@(x) : 
~=t  JA 

N 

X ~I (z,~(j):exp[i~-fle,~(j)e~(xj)]:) 
j = 2  

yields 
N 

V x t P A ( q l  " " " q N )  = ] ~ e a ( l ) 2  e , ~ ( 2 F m (  x '  - x j ) o a ( q '  " " " q N )  
j = 2  

S 

+ Beo,,)2eofflx Fro(x,- X)Oa(q,.. qNq) 

+ R';(x,) 
with 

nr(x,) = m2,f~eo(,) f dy 

(3.8) 

we get 

Using the estimate (i) of the lemma (with p = l) and the fact that Fro(x) is 
integrable for any rn > 0 (see Appendix B) with 

fax IFm(x)l <~ Clm-' (3.10) 

IR2(x,)l < C'f-Ble,~(l)Lm2faxlFm(x)l< C2m (3.11) 

where C 2 is independent of A. 
We multiply Eq. (3.8) by a function f (x  0 ~ j ( ~ 3 )  and integrate on x~. 
By (3.10) and the lemma (i), all the integrands are majorized uniformly 

in A by integrable functions. Using (3.11) and taking the limit A--+N 3 we 

(3.9) 
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then get by dominated convergence 
N 

- f dx,(Vf)(x,)o(q, ...qN)-- B Z (dXlf(Xl)Fm(ql,qj)o(q, ' '  "qN) 
j=2 ~ 

-Bfdx, f(x,)fdqFm(q,,q)O(q,.. "qNq) < mC2fdxff(x)f (3.12) 

Under the hypothesis of Theorem 3, we shall prove in the next section the 
local neutrality ~ =  le~o(q) = 0. Using this and taking the limit m--) 0 in 
(3.12) yields the regularized BBGKY equation (3.2). 

Proof of the Corollary. We have 

lira Fm(x) = F(x) = - (V V)(x) 
m~O 

and IFm(x) l  ~ CIx{ -2  uniformly in m. If condition (P) holds or if one has 
the clustering property (3.3), one can take the limit m o O  in (3.2) by 
dominated convergence to get the BBGKY equations in the weak sense 

fax, (Vf)(x,)p(q~ . . .  qu) 

N 

= ,S f dx, f (x , )  ~,~ F(ql,qj)p(q, . . . qN)+ f i f  dx, f (xl)  f dqF(q,q ) 
j=2  

•  P ( q l ' ' '  qu)P(q)] (3.13) 

TO conclude the proof we use general theorems on distributions. It 
follows from (3.13) that the derivatives of order 1 of p(alx l ,q2 . . ,  qN) 
(considered as distributions of xl) are functions, and therefore p(az,xl, 
q2 . . .  qi) are continuous functions of x 1 (Ref. 15, p. 189). The fact that 
these derivatives are continuous functions implies in turn that p(eqx~, 
q2 . . .  qJv) are continuously differentiable in Xl (Ref. 15, p. 61). From this 
we conclude that the BBGKY equations hold in the ordinary sense. [] 

Remarks. 
(1) In dimension v = 2 and for system obeying the same conditions P 

[with (i) repaced by fl small], Theorem 2 and the Lemma still hold. We then 
get the validity of the ordinary BBGKY equation by the same method. 

(2) By the work of Imbrie, (8) jellium systems in dimensions 2 and 3 
also satisfy Theorem 2 and the Lemma in the range of convergence of the 
cluster expansion. We then get for them the ordinary BBGKY equation as 
in Theorem 3. 

(3) In the charge symmetric case and v = 2, we first construct the 
thermodynamic limit of finite volume systems defined by (2.4), (2.5) with V 
replaced by V(1 + m2V) -1 (Yukawa system) and call om((q)N) the c o r r e -  
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sponding correlation functions. We then define the Coulomb state for u = 2 
b y  P((q)N) ~ limm~0P m((q)N) (the limit exists by correlation inequalities~6)). 
If the P((q)N) cluster as in (3.3), one can check that the ordinary BBGKY 
equation holds. 

(4) For charge symmetric systems in one dimension, the same remark 
applies. General one-dimensional charged systems (including the jellium) 
have been shown to satisfy the equilibrium equations in Refs. 16 and 9. 

(5) A slightly different regularized hierarchy was introduced in Ref. 
16 (using a spatial cutoff instead of the Yukawa cutoff), and this hierarchy 
was shown to be equivalent to the classical KMS condition. 

4. THE I -SUM RULES 

In this section, we present a new derivation of the /-sum rules (1.2), 
(1.3) based on the Sine-Gordon representation. We first prove the local 
neutrality (1.2) which is seen to be generally true in homogeneous phases, 
irrespective of the value of the parameters/3, z and of the cluster properties 
(Theorem 4). In fact, to establish its validity, one uses only a bound 
uniform with respect to A which is expected to hold in great generality. We 
then derive the/-sum rules for systems obeying the condition (P), where the 
cluster properties play an important role (Theorem 5). 

Theorem 4. If the thermodynamic limit of the finite volume correla- 
tion functions (2.5) exists [with the potential as in (2.1) or (2.6)], is 
translation invariant, and if 

IPA(q)I ~ C} 
[{q~(X))A[ < C uniformlywith respect to A (4.1) 

then the local neutrality ~]~=le~p(q) = 0 holds. 

Corollary, Coulomb systems satisfying condition (CS) or (P) are 
locally neutral. 

Theorem 5. Coulomb systems satisfying the condition (P) obey the 
/-sum rules (1.3) for all l,N. 

The basic identity which will generate the local neutrality and the sum 
rules is the formula of translation of a Gaussian measure, which we now 
recall. Let d/~(~) be a Gaussian measure with smooth covariance V(x, y) 
and g(x) E J(R~) .  The formula for the change of variable q~(x)~(x) + 
g(x) in the integral fd~(~)F(,b) is (13) 

1 - V-Ig ) ]  (4.2) ;dl~(e~)F(~) = f cl~(~)F(~ + g)exp[ - -~(g, V-lg) (~, 
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We see formally on (4.2) that the measure d/~(~) is invariant under transla- 
tions g which belong to the kernel of V-1 (i.e., V lg = 0). For a Coulomb 
kernel, as V - I =  d -2 ( -2 x  + dZ)(-A),  d/x(qb) will be invariant under trans- 
lations by harmonic functions Y with (A Y)(x) = 0 for all x ~ [R ". The local 
neutrality and the / -sum rules are the differential expression of this invari- 
ance. Technically, we have first to approximate Y(x) by a function with 
compact support. The resulting boundary terms are then shown not to 
contribute in the thermodynamic limit as a consequence of the Lemma. 

Proof of Theorem 4. Consider PA(fi, z) = ]A I llnEA(~Q,z), EA(18,z ) 
represented by the functional integral (2.8), and perform the translation 
~(x)~O(x) + tk(x), k(x) E C0~(R 3) and t ~ N. We get from (4.2) 

PA( B,z)= [a[-'ln f dlxv(e~)expl-- -~(k,V-!k) t2 - t(O,V-%)] 

S 

• exp{ ~=lZ~fadxexp[iVc-fle~tk(x)]:exp[ivT-fle~O(x)]: } (4.3, 

Since PA(tS, Z) is independent of t, we have 

(4.4) 

The first term on the right-hand side of (4.4) tends as A ~ ~3 to ( ~ s =  le~p~) 
fdx k(x) by dominated convergence [with p~ = lima~a~pA(aX)]. Using the 
bound (4.1) we thus get from (4.4) 

@ e~p~ < C__if__ fdx I( V-'k)(x)[ 
(4.5) 

"=' I;ax (x)l 

We now choose k(x) as follows for any positive R: 

( 1, Ix] < R k(x) v0, Ix[/> R + 1 Ik(x)l < 1 (4.6) 

and I(APk)(x)] ~< C uniformly with respect to R, p = 1, 2. Since (V-Ik)(x) 
= d - 2 ( - A + d 2 ) ( - A ) k ( x )  is only nonzero  for R < I x [ <  R +  1, 
fdx [(V- Ik)(x)l is of the order of R z, and therefore (4.5) implies 

Since R is arbitrary, Theorem 4 is proven. �9 
The corollary is obvious since for (CS) systems (0(x))  A = 0 and for (P) 

systems, (4.1) is a particular case of the Lemma (i). 
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Remark. We expect that homogeneous charged systems are always 
locally neutral, and that the bound (4:1) is generally true, even in non- 
screened phases. (4.1) holds in the high-temperature two-dimensional 
phase, as well as in the high-temperature phases of jellium systems for 
u - -2 ,  3. The local neutrality can also be verified explicitly in one dimen- 
sion.(6) 

Proof of Theorem 5. ~We do the translation O(x)-~O(x)+ tg(x), 
g(x) ~ C0~(~3), t ~ ~, in a general correlation function (2.10). This gives 

PA(q, �9 �9 �9 qN) = E'( t3, z)fdl~v(O) exp - ~- (g,  V - ' g )  - t(+, V -  

exP(o_ ,.oC  ..exp Ei eo,,+l:expE,  o+ l) 
N 

• IF[ { z~(j)exp[ iff-fie~(j)tg(xj)]:expl i~e~u)O(x/)]: } 
j = l  

(4.7) 

Taking the derivative at t = 0 and using the identity (4.4) we find 

N 

i~/-fl ~, g(xj)%j)PA(q, . . . qN) 
j = l  

ffx g(x) eo[oA(q, ...qNq)--oA(ql '''qN)PA(q)I 
a= l  

= fadx(V- 'g)(x)(  [I {z,~(j):exp[i~ffle~,j)ep(xj)]: } ; ~ ( x ) ;  (4.8) 
j = l  /A  

We can take the limit A ~ R 3  in (4.8) using a dominated convergence 
theorem together with the bound of the Lemma (i) 

N 

i~/-fi Z g(xj)%j)P(q,"" qN) 
j = l  

+ e~f-B fdq  g(x)e~Ip(q,.. ,  q~q) - P(ql . . .  qu)B(q)] 

=fdx(V-lg)(x)(j~__l{z~(j):exp[iff-fle~(j)O(xj)l:};~(x)) (4.9) 

Choosing g(x) of the form g(x) = Yl(x)k(x), where Yl(x) is an harmonic 
polynomial of order l and k(x) is as in (4.6), we see that (V-  ~g)(x) has its 
support in the shell R < Ix] < R + 1 where it is of the order R l. With the 
exponential clustering of the Lemma (ii), we therefore find that the right- 
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hand side of (4.9) is bounded by CRt+2exp( - ~R), ~ > 0. The result of the 
theorem now follows when we let R + r162 in (4.9). 

Remark. It  is clear from the proof of the theorem that the / - sum rule 
will hold whenever the correlations occurring in the right-hand side of (4.9) 
decay faster than any inverse power. This is known to be the case in the 
high-temperature phase for v = 2, 3, including jellium systems. 

5. C O N C L U D I N G  REMARKS 

In this section, we discuss at an heuristic level symmetry properties 
that should possess Coulomb states which obey the / - sum rules. 

Formula (4.7) shows that, up to boundary terms, the translation of the 
random field g,(x) yields an identity which can be viewed as invariance of 
the state u n d e r  the transformation z<~z<~exp[ie<~Y(x)] in the space of 
activities. The sum rules are then the Ward  identities associated with this 
symmetry. 

Alternatively the symmetry can be formulated as the invariance of the 
state under translations in the space of chemical potential or external fields. 
Denote by PA((q)N, P') and P((q)N, I x) = limA~3PA((q)u, IX) the correlations 
as functions of the chemical potentials IX = (Ixl .-  �9 Ixs), with IX~ = / 7 - l l n z ~ .  
We derive easily, setting e = (e I . . .  es), 

PA((q)N, + Xe) 
~h ~=0 

= ~ e~oa((q)N, b ~) 
c~=l 

+ fA dx ~ e~[OA((q)uq, l~)--OA((q)s,Ix)OA(q,~)] (5.1) 

Taking the formal infinite volume limit of (5.1) yields 

as a result of the l = 0 sum rule (1.3) Equation (5.2) is the differential form 
of the invariance of the state under translations in the e direction in IX 
space, i.e., 

Ix) = + ae) (5.3) 

In other words the state depends only on that part  of the vector/~ which is 
perpendicular to e. This invariance property was found to be true by Lieb 
and Lebowitz for the pressure p(/7, #~), as an expression of local neutrality 
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of the state. (1~ We see that the same invariance for the whole state would 
be equivalent to the full set of electroneutrality sum rules. The equations 
(5.2), (5.3) can be checked in one dimension by explicit calculations, but we 
did not prove them for v > 1. In the plasma phase, this would require 
showing some screening in a situation where ~'~=le~z~ ~ 0 [i.e., relaxing 
condition P(ii)], which would involve controlling surface charge effects. 
Some recent progress in this direction has been made in Ref. 11. Notice 
that if (5.3) holds in some domain of/~ space, the state depends there only 
on (s - 1) activity parameters, and hence the condition P(ii) does not imply 
any restriction, but is simply a choice of a particular parametrization in this 
domain. 

The general /-sum rules can be interpreted as follows. Consider now 
the state as a functional of space-dependent chemical potential (i.e., exter- 
nal fields) /~(x)= ( /xl(x) . . . /~s(x))  and denote it by PA(q,), ~( '))  and 
o(q)u,/x(.)). The infinitesimal action of a translation in the direction eY(x) 
is 

~-XOa((q)u, /x(.) + Xer( . ) )  
x=0 

= ~, %j)Y(xj)oA((q)N, ~('))+fdx e~Y(x) 
j ~ l  a = l  

• /~('))-- PA((q)N, /'I('))PA(q, / / ' ( ' ) ) l  (5.4) 

Choosing Y(x) harmonic on R 3 and taking again the formal infinite volume 
limit gives 

O---o((q)No)t ,/~+XeY(.)) x=o= f dqe~V(x)o(qI(q)N)=O (5.5) 

by the general /-sum rules (1.3). This would correspond formally to the 
global symmetry 

P((O)u, /~) = P((q)zv, /~ + XeY(-)) (5.6) 

with Y(x) harmonic. Physically (5.6) says that in the plasma phase, the 
state does not change in an external harmonic potential. More precisely, if 
one constructs a state starting at finite volume with an arbitrary charge 
distribution at the boundary (generating an harmonic field in the bulk), its 
thermodynamic limit should not depend on these boundary charges when 
the parameters correspond to the plasma phase (high temperature, low 
density). This invariance was proven by Fr6hlich and Pfister ~lv) in the 
special case of a planar uniform charge distribution (i.e., a plane condensor 
generating a constant field) by means of correlation inequalities. These 
symmetries should play an important role in understanding the structure of 
Coulomb states and their equilibrium equations. 
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A P P E N D I X  A 

We prove the formulas (3.5) and (3.7) under the 
V x V(x, y) and V X V(x, x) exist for all x andy.  

Proof of (3.5). 

X 2 

+ exp[ 1 X:V(x,x)]vxfd,(0)exp[ iX0(x)iF(0) 

To calculate Vxf d#~(O) exp[ihq~(x)]F(O), we consider 

l_h f dlx(e?) (exp[ iXe~(x + h) ] - exp[ iXe?(x) ]) F(q~) 

1 1 d 
h f d ~ ( ~ ) f 0  de de exp{ iXe[ 0(x + h) - 0(x)] )exp[ iXO(x)iF(O) 

(A.2) 

condition that 

(A .b  

iX 

• e• + h) +/x(1 - e)0(x)]F(0) 

Using the integration by parts formula (3.4), this can be expressed as 

- h2  fo h ~de {e[ V(x + h,x + h ) -  V(x,~ + h)l 

+ (1 - e)[ V(x + h,x)  - V(x,x)]) 

• exp[ iTteO( x + h)+ i~t(1 - e)O( x) ]F(+) 

a fo,d@y[v(x + h ,y ) -  v(x,y)} +~ 

6F(O) 
• exp[ i)teO(x + h) + i;t(1 - e)0(x) ] dO(y ) 
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Because of the regularity of the covariance, qa(x) can be taken as continu- 
ous function of x, see Ref. 7. In the limit h ~  0 we finally get 

-X2s 2e)VxV(x, y)]y=x + eVxV(x,x)l 

• fdt~ (q,)exp [ (i)t@(x))F(@)] 

+ iXfdy V~V(x, y)/d~(e~)exp[ iXe~(x)] 6F(r ~,(y) 
This combined with (A.1) proves (3.5). The formula (3.7) is proven in the 
same way. 

APPENDIX B 

To treat the plasma case, we have to replace Fm(x - y )  everywhere in 
the proof of Theorem 3 by F~'(x, y)  = - VxD[(x , y)D'~(x, y) defined as in 
(3.1) with V replaced by V a (2.6). 

Following Ref. 7 [let us remark that our d 2 is their (d/o) -2] we have 

O~ n = VA(I -t- m2VA) -1 

-1 
~-~ { [ ( - - A A ) I -  ( - - ~ A " ~  d 2 ) - I  ] 1 -1.- m2 ) 

-1 
m 2 ] 

- 2 r2 _ ) -  - ( - A a  + r + )  (B. l )  
F+ -- _ 

where r2+ = 2d2[1 _+ (1 - 4m2d-2)l/2]. For d fixed and m small, we have 

2 r 2 m 2 d 2 > r+  > > (B.2) 

Using the methods of the images (13) and (B.1), it is easy to obtain the 
following: 

(i) For every x and y,  the following derivatives exist and 

IVxD2(x, y)l ~< c (U.3) 
V m I xDa(x,x)] ~< C (B.4) 

with C uniform in A and m. 
(ii) For Ix - y [  large enough 

]D~'(x,y)] < C , e x p ( - r _  I x - y ] )  (B.5) 

IVxD'~( x, Y)I < C , e x p ( -  r Ix - Yt) (B.6) 

where C l is uniform in A. 
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(B.3)-(B.6) provide the uniform bounds needed in the proof of Theo- 
rem 3. 

Moreover, we find from (B.1) 
lim DA~x,y ) m .  = D m ( X  __y)  

A~R 3 

- r+2 dZ_--r 2_ [ exp( (B.7) 

and (B.2) together with 

leads to (3.10). 

r Ix-yl)-exp(-r+lx-yl)]~lx~_~ 

Vx 4~]xl = C ~  1 
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